Mathematics 1
Licence ChimieParcours Physical Chemistry (UFAZ) (délocalisé en Azerbaïdjan)

Catalogue2024-2025

Description

Reimann Integrals, Integration techniques (integration by parts, substitution, trigonometric methods of integration, Bioche rule) , Applications of integration, Improper integrals, Laplace Transform, Ordinary differential equations, Numerical Series Taylor series , Asymptotic comparison .

Compétences requises

  

Compétences visées

At the end of this course, student will learn to evaluate integrals using various methods such as, integration by parts, substitution, trigonometric substitutions, and partial fractions; apply the concepts of definite integrals to solve problems involving area, volume, and area of surface of revolution. Students will be able to determine the region of convergence of a series, determine the Taylor and MacLaurin series of a function. Students will understand the basic theory of ordinary differential equations (ODE) and to develop methods for solving ODE.

MCC

Les épreuves indiquées respectent et appliquent le règlement de votre formation, disponible dans l'onglet Documents de la description de la formation.

Régime d'évaluation
ECI (Évaluation continue intégrale)
Coefficient
1.0

Évaluation initiale / Session principale - Épreuves

LibelléType d'évaluationNature de l'épreuveDurée (en minutes)Coéfficient de l'épreuveNote éliminatoire de l'épreuveNote reportée en session 2
Notebook
SCA1
First written exam
ACET902
Second written exam
ACET1203